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i. Modeling of the LST System with the CMG Control Loop

The purpose of this section is to study the dynamics of the LST control

system, and to arrive at a simplified model for computer simulation without

loss of accuracy. A dynamic model for the LST control system with the

complete CMG control loop is shown in Figure 1-1. Other than the CMG

nonlinearity model, this system is essentially the same as that in reference

[1]. It should be noted that the limits on the current command, the gimbal

rate command, and the torque amplifier voltage, have been neglected. The

model also assumes a second-order pure inertial vehicle dynamics. The

cogging torque, ripple torque, and the tachometer ripple of the CMG are

also neglected.

Since the LST control system has a sample-and-hold in the forward path,

discrete-data system theory should be used when studying the system's

behavior. However, because of the complexity of the CMG nonlinearity, an

analytical study of the entire system is quite complex. The present task

calls for two approaches to the analytical study of the stability of the

system. The first analysis involves the assumption that the sampling rate

of the system is high, so that the system may be approximated by a continuous-

data system. This is accomplished simply by shorting out the sample-and-

hold in Figure 1-1. The second approach involves the insertion of a

fictitious sample-and-hold at the input of the nonlinearity. This way,

the system has two synchronized samplers, and discrete-data techniques such

as the discrete-describing function method may be used.

Characteristic Equation and Eigenvalues of the Continuous-Data LST

In this section the LST system modeled in Figure 1-1 is considered to

be of continuous-data, that is, without the sample-and-hold. If we

represent the input-output relation of the CMG nonlinearity between 0G and
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Figure 1-1. A dynamic model for the LST control system with the complete CMG control loop.
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TGF by an equivalent gain N, we can derive the characteristic equation

and determine the eigenvalues of the linear portion of the system.

The characteristic equation and the eigenvalue studies of the system allow

us to gain understanding of the dynamic behavior of the system, and

eventually lead to the simplification of the system model.

With reference to Figure 1-1, the characteristic equation of the

continuous model of the system for stability analysis may be obtained

from the following equation:

1 + E Loop gains = 0 (1-1)

Or,
G 2

1 + N(l + G4 5) s+ H 2G6 G8 + G5 G6 KBKT + G4G5

+ G3 G4 G5G6 + GlG2 G3 G4 G5G6 G7 KT + G6 G8 H2G 4G5  0 (1-2)

Dividing both sides of the last equation by the terms which. do not contain

N, we arrive at the equation which is of the form,

1 + NG(s) = 0 (1-3)

where

G6(1+G4G5)G(s) = G6(+G 4 (1-4)
SA0

and

A0 = 1 + H2G 6 G8 + G5 G6 G8 KBKT + G4 G5 + G3G4G5G6

+ G1G2 G3 G4G5G 6 G7KT + G6 G8 G4 G5 H2  (1-5)

G1 = K + Kls

KI

G2 Kps+KI



K s+K

3 Ks

SKCLI (1+Tls)

1

G = R, +TS--I

6  JGs

J JsG = s

-8 s

IOA +DOAs+KOA

The following system parameters are given:

H = 600 ft-lb-sec .CMG Angular Momentum

JG= 2.1 ft-lb-sec2  Gimbal inertia

IOA = 2.1 ft-lb-sec2  CMG output axis inertia.

DOA = 20 ft-lb-sec CMG output axis damping

KOA = 106 ft-lb CMG output axis spring constant

K0 = 5.75835X10 3  vehicle controller coefficient

K1 = 1.37102X10 3  vehicle controller coefficient

KT = 2.5 ft-lb/amp Torque motor sensitivity

KB = 3.4 volts/rad/sec Torque motor back emf constant

Rm = 4.4 ohms Torque motor armature resistance

TE = 6.4 milliseconds Torque motor armature time constant

Kp = 216 ft-lb/rad/sec Gimba rate loop proportional gain
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KI = 9700 ft-lb/rad. Gimbal rate loop integral gain

KCLI 1.6X104  volts/sec/amp Current loop integral gain

T1 = 6.4 milliseconds Current loop lead time constant

T2 = 0.16 milliseconds Current loop lag time constant

J = 105  ft-lb-sec2  Vehicle inertia

The numerator of Eq. (1-2) may be regarded as the characteristic

equation of the overall system. Let us consider.that the CMG is without

the nonlinear friction chearcteristics. The overall LST system is linear,

and the characteristic equation is given by

a = 0 (1-7)

Substituting Eq. (1-6) into Eq. (1-5), and simplifying, the numerator

polynomial of A0 when equated to zero gives the characteristic equation.

Thus we have

Sb0s + b + b2s7 + b3s + b4s + 4  + b5s4 +b 6 s3 + b7s2

+ b8s + b 9  0 (1-8)

where

bo= R JGJVTET2IOA

b = RmJGJV[DOATET2 + IoA(TE + T2)]
b2 =RmJGJV[IOA + DOA(TE + T2) + KOATET2] + KCLIJVJGT1IOA

+ KBKTJVT 2 A + H2JVRmT2TE

b3  RJGJ V [DOA + (T2 + TE)KOA] + KCLIJVJG(T1DOA + IOA)

+KBKTJV(T2DA + IOA) + H2JvRm(T2 + TE) + JVKCLIT1OAKp

b4 = RmJGJVKOA + KCLIJVJG(DOA + KOATl) + KBKTJV(DOA + KOAT2)

+ H2JVRm + JVKCLI[(TlDOA + IA)Kp + KITI0A] + KCLIJVH2TI
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b5  KCLIJVJGKOA + KBKTJVKOA + JVKCLI Kp(DOA + KOATI)

+ KI(TIDoA + IOA)] + KIKCLIHTIIOAK1 + KCLIJVH2

b6 = JVKCLI [KAKp + KI(DOA + KOATI)] + KIKCLIH[(TIDOA + IOA)Kl

+KoT I OA]

b7= JVKCLIKIKOA +K O(T1DA+ A) + KI(DOA + KOATI)]

b8 = KIKCLIH[KOAKl + KO(DOA + KOATl)]

b9 = KIKCLIHKOKOA (1-9)

Substituting the values of the system parameters into these coefficients,

we have,

b0 = 1.98697

bI = 12747.9

b2 = 0.:483289X10 8

b3 = 0.192517X0 1 1

b4 = 0.273187X10 1 4

b5 =0.619189X10 1 6

b = 0.44553X10 18

b7  O.163408X1020

b = 0.131112X10 21

b9  0.536217X10 2 1

The eigenvalues of the system, or the roots of Eq. (1-8) are found

and are tabulated below:
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-4.56811 + j4.68534
vehicle dynamics

-4.56811 - j4.68534

-1563.11 CMG torque motor Armature time constant

-39.8505 + j40.9207
CMG dynamics

-39.8505 - j40.9207

-12.4647 + j748.038
CMG output axis torsion dynamics

-12.4647 - j748.038

-3072.85 + j3554.86
CMG current loop controller

-3072.85 - j3554.86

The contribution of the sectors of the LST and the CMG dynamics to these

eigenvalues are indicated.

It is essential to investigate the importance and weight of each of

these eigenvalues upon the dynamics of the entire system. Since some of

these modes have very short time constants and high-frequency oscillations,

it is expected that a digital computer simulation of the entire exact

model will be time consuming and. costly.

We shall show that for computer simulation and analytical purposes

some of these fast and oscillatory modes of the system may be neglected.

Figure 1-2 illustrates the root locus diagram of Eq. (1-8) when K0
and K1 are varied proportionally from their nominal values which are listed

earlier. In Figure 1-2 the variable parameter is indicated as K which is

the multiplier of the nominal KO and K1. Table 1-1 gives the location

of the roots as a function of K.

It is interesting to note from the root locus diagram that for the

nominal KO and K1 both the LST vehicle dynamics and the CMG dynamics have

a relative damping ratio of approximately,0.707. Furthermore, the
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Figure 1-2. A root locus diagram of Eq. (1-8) when Ko and K1 are varied proportionally.



Table 1-1. Eigenvalues of the complete LST as

K0 = KKO (nominal) and K1  KKl(nominal) vary.

K0 (nominal) = 5.75835X10 3

K1 (nominal) = 1.37102X10 3

K Roots

0.1 -0.379 ± ji.837 -1563.1 -44.034 + j45.091 -12.470 ± j748.04 -3072.8 ± j3554.8

0.5 -2.041 ± j3.853 -1563.1 -42.374 _ j43.335 -12.467 ± j748.04 -3072.8 ± j3554.8

1.0 -4.568 + j4.685 -1563.1 -39.850 + j40.921 -12.465 ± j748.04 -3072.8 _+ j3554.8

2.0 -6.295 -19.522 -1563.1 -31.515 ± j35.779 -12.459 ± j748.04 -3072.8 ± j3554.8

5.0 -4.680 -64.314 -1563.1 -9.943 + j47.136 -12.443 ± j648.04 -3072.8 ± j3554.8

9.0 -4.441 -82.631 -1563.1 -0.925 + j58.522 -12.422 _ j748.04 -3072.8+ j3554.8

9.7 -4.422 -84.921 -1563.1 0.206 ± j60.068 -12.418 ± j748.04 -3072.8 _ j3554.8

10 -4.415 -86.866 -1563.1 0.667 ± j66.774 -12.417 ± j748.04 -3072.8 + j3554.8

100 -4.220 -156.13 -1563.1 45.437 + j129.14 -11.94 ± j748.03 -3072.8 ± j3554.8
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eigenvalues at -1563.1, -3072.8 + j3554.8, and -12.465 + j748.04 are not

sensitive to the change of the loop gain at all.

Another way of investigating the significance of each of the

eigenvalues toward the dynamics of the entire system is to evaluate the

residue of the closed-loop transfer function that corresponds to each of

the eigenvalues.

From Figure 1-1 the closed-loop transfer function of the LST system

without the CMG nonlinearity is written

0 G1G2G 3G4G5G6 Gi7K T" (1-10)
X A0

After simplification, Eq. (1-10) becomes

eV KTKCLIKI H(a0 s4+al s3+a2s2a+aa 4)x (1-11)

where A is given by Eq. (1-8), and

a0 = IOAK1T1

al = DOAK1T1 + IOA(K1 + KoTl 1

a2 = KOAT1Kl + DOA(Kl + KOT1) + IOAKO

a3 = KODOA + KOA(K1 + KOT1)

a4 = KOKOA

Substitution of the system parameters into Eq. (1-11), and performing

partial faction expansion, the residues of Eq. (1-11) at its poles are

tabulated in Table 1-2. It is interesting to note that only the residues

which correspond to the CMG and the vehicle dynamics are of significance.

The contributions from the eigenvalues at -1563.1, -3072.8 + j3554.8, and

-12.465+ j748.04 are very insignificant.



Table 1-2. Residues of Eq. (1-11) at its poles

Roots Residues

Vehicle dynamics -4.56811 + j4.68534 14.3102 T j0.5256

CMG torque motor
armature time constant -1563.11 0.002778

CMG dynamics -39.8505 + j40.9207 -14.2967 + j12.7188

CMG output axis
torsion dynamics -12.4647 + j748.038 -0.013248 + j0.0001275

CMG current loop
controller -3072.85 -+ j3554.86 -0.001565 T j0.002523
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Still another method of investigating the effects of each of the

system components on the system dynamics is to make the frequency-domain

plots for G(s) of Eq. (1-4). These plots are also useful for the

continuous-data describing function study of the system.' In Figure 1-3,

curve 1 gives the G(s) plot in decibels versus phase for the 9th-order

LST system. In the same figure, curve 2 gives the G(s) plot when the

output axis torsional dynamics of the CMG are neglected; that is, IOA = 0,

DOA O, KOA 0=.

In this case, G(s) is simplified to

Rms(l +T2s) +T )+KL I(1+T s)
G(s) = (1-12)

where

A = RmJGT 2TEs 5 + RmJG(T2 + TE)s 4

+ (RmJG + KCLIJGT + KBKTT2)s3 + (KCLIJG + KBKT

+ KCLIKpT1)s2 + KCLI(K p + KiT 1)s + KCLIKI (1-13)

In addition to neglecting the CMG torsional dynamics a further

simplification of the LST system can be conducted by neglecting the

time constants T1, T2, and TE, as these are small when compared with the

time constants of the vehicle and the CMG. Figure 1-4 gives the block

diagram of the Gimbal rate control loop and the CMG with these simplifications.

Using the block diagram reduction technique, the system in Figure 1-4 is

reduced to the block diagram of Figure 1-5. Since KCLI/R m is very large,

the transfer function of the inner loop involving KCLI and Rm is approximately

unity. Furthermore, since KB/KCLI is very small, the back emf loop of

Figure 1-5 may also be neglected. The final simplified gimbal rate control

loop and CMG dynamics are represented by-the block diagram-of Figure 1-6.

The transfer function of the simplified CMG control loop is
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Figure 1-4. Simplified gimbal rate control loop and CMG.
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0G KpS+KI
Y (1-14)

JGS2 K+K+KI

Substituting the system parameters into the last equation, we have

G 102.857(s+44.9074)
Y (s+51.428+j44.43)(s+51.428-j44.43)

Now replacing the CMG control loop in Figure 1-1 by the simplified

diagram of Figure 1-6, we have the block diagram of Figure 1-7 for the

simplified LST system without sampling.

The transfer function for Gts) in Eq. (1-4) is simplified to

Jvs2

G(s) - V

JGJvS +JvKpS +JVKIs 2 +KiHKI+KiKOH

(1-16)

Figure 1-8 shows the plot for the G(s) in Eq. (1-16). It is

interesting to note that the three G(s) plots in Figures 1-3 and 1-8

are very similar for frequencies below 1000 rad/sec. This proves

that the LST system may justifiably approximated by the simplified system

of Figure 1-7.
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Then Tf can be generated by intebrating both sides of Eq. (2-1) with

respect to t. It is observed that TF is easily found as a function

of x. However, the simulation model actually has T F generated by a

function generator with TGF as the input. The simulation block diagram

for the CMG friction nonlinearity is shown in Figure 2-1. Notice that

this model has eG as input and TGF as the output.

Referring to Figure 1 ,-the lock diagram of igure 2-1 may

replace the blocks for the simplified nonlinearity between eG and TGF.

It has been demonstrated experimentally [3] that for the solid

rolling friction the relation between TGF and TGF may be approximated

by a square-law expression,

T. GF - (TF - TGF)2 T T (2-2)G deG  (TGF FGF GFO

where Y is a positive constant.

TF = 0 TGF > TGFO (2-3)

However, for the CMG friction, the frictional torque is also velocity

dependent, as shown in Figure 2-1. Therefore, Eq. (2-2) should be written

TF = Y(TGFI TGFO)2  (2-4)

TGFI = TGFSGN(eG) (2-5)

For simulation purpose, the block diagram of Figure 2-1 can be

easily programmed on the digital computer, and the program can be used

for any input.

Our objective is to investigate the behavior of the

nonlinearity under a sinusoidal- excitation- so -that-the describing

function can be derived. In the present situation, however,
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Figure 2-1. A simulation block diagram of the CMG friction nonlinearity.
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we shall show that the input-output relation of the CMG.

nonlinearity is different for sine and cosine inputs. It should be

noted that the describing function is a pseudo-sinusoidal steady-

state analysis so that either sinusoidal or cosinusoidal inputs may

be assumed. These are shown by the following derivations.

(1) Let G = A sinwt (2-6)

then A cosmt (2-7)
G

For eG > 0, Eqs. (2-1)~2-4) and (2-5) lead to

dTGF
dt = yAsinwt (T GF T GF )2  (2-8)

2k'7<wt < (2k + 1)rT, k = 0, 1, 2, ....

Solution of the nonlinear differential equation of Eq. (2-8) yields

- - coswt + C (2-9)

GF-T GFO

The constant C is found by specifying the initial value of TGF at t = 0:

t =0 TGF = -TGFi TGFi > 0 (2-10)

Thus,

C =A+ 1 (2-11)
w TGF +GFO

Substitution of the last equation into Eq. (2-9) and simplifying, we have

the solution

TGF 2 '-cosw )- R+
TG-- 1 b (2-12)

GFO R++ 21-tcos2t)

which is valid for 6G 0, or 2kw < At < (2k + l)T, k= O, 1, 2,...
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where
2TGFoY A

b (2-13)

and

R GFi (2-14)
GFO

For G < 0, Eqs. (2-1), (2-4), and (2-5) lead to

dTGF
GF _ yA sinwt(-TF T )2  (2-15)

dt GF GFO

(2k+1)i < wt < (2k+2)r, k = 0, 1, 2, ....

The solution of Eq. (2-15) is

1 _ A cosAt + C (2-16)
-TGF T GF0

GF GFC

The boundary condition is TGF = -TGFi at t = 2rrand its integral

multiples. Thus,

C = yA + 1 (2-17)w TGFi -TGFO

Substitution of C into Eq..(2-16) and simplifying, the final solution is

T R b
GF R- 2 -GFO - (l- cost)+- (2-18)

which is valid for 0
G < 0, or (2k+l)7T < wt < (2k+2)T, k = 0, 1, 2,...,

and eG is given by Eq. (2-6).

-TGFi , which represents the value of TGF at wt = 2kv, k = 0, 1, 2,...

can be determined by matching the values of TGF/TGFO at t = (2k+l)n,

k = 0, 1, 2, ... , for the two ranges of 0G.  Setting wt = r and

equating Eq. (2-12) to Eq. (2-18), we have
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R Rb - R - R-- b

R - R--- (2-19)

R+1 + b b+R-1

which is simplified to

R2 + -l= 0 (2-20)

Solving for R gives

R 1- (2-21)

Since TGFi <TGFO and TGFi > 0, R < 1; the plus sign must be chosen in

Eq. (2-21).

1 2 TGFiR- TGFi (2-22)
-b GFO

The same result for R can be obtained by use of the boundary condition at

wt = which is TGF = TGFi.

The consequence of defining eG as a sine function, Eq. (2-6), is that

TGFi is dependent on w, since b depends on w. Figure 2-2 gives'the

TGF/TGFO versus eG/A relations for various values of A/w. Notice that

the maximum value of TGF/TGFO is different for different ratios of A/e.

Figure 2-3 illustrates the relations between TGF/TGFO and eGW/A with

0 G given by Eq. (2-7). Note that the eG axis is normalized by w/A, so

that as w varies not only the bounds of TGF/TGFO will vary but also the

bounds of 0G.  These curves are also plotted for various values of A/w

indicated. It would seem that by defining 0 G as a sine function as in

Eq. (2-6), there is an advantage of using the nonlinear characteristics

of Fig. 2-2 for analytical purposes. In principle, either eG or OG'

but not both, may be used as the input to the nonlinearity, provided that

the corresponding nonlinear characteristic is used.
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This is because 0G and eG are directly related, In other words, the

TGF/TGFO versus 0G characteristics contain the same information as

those of TGF/TGFO versus 0G.

(2) Let eG = A cos wt (2-23)

Then 0G = -Awsin wt (2-24)

For iG < 0, Eqs. (2-1), (2-4) and (2-5) lead to

dTGF 
2dtGF -Awsinwt (-TGF - TGFO) (2-25)

2kTr < wt < (2k+l)r, k = 0, 1, 2, ...

The solution of Eq. (2-25) is

-l

GF+T = yA cos wt + C (2-26)
TGF+ GFO

At t = 0, the boundary condition on TGF is TGF = TGFi where T > 0.
GF GF GFi' GFi

Equation (2-26) gives

C = -yA- (2-27)
TGF+ TGFO

Substituting Eq. (2-27) into Eq. (2-26) and simplifying, the complete

solution is.

TGF R+l- (l-coswt)

T a 1 (2-28)
GFO 2 l -cost)+T+-1 (2-28)

which is valid for 2kr < wt < (2k+l)r , k = 0, 1, 2, ..... , or < 0, and

a = 2yATGFO (2-29)

For G > 0,

dTGF

dt - yAwsinwt(TGF - TGFO )  (2-30)

(2k+l)fr < wt < (2k+2)7r, k 0, 1, 2, ...
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The solution of Eq. (2-30) is

-1

TGF - T = yAcoswt + C (2-31)
GF TGFO

The boundary condition is TGF = TGFi at wt = 2w. Thus, Eq. (2-31) gives

C =-yA- (2-32)
TGFi -GFO

and the complete solution is

TGF -R-~ + (l-coswt)
T - a 1 (2-33)
GFO l(1-coswt) + R-1

which is valid for e > 0, or (2k+l)7 < wt < (2k+2)r, k = 0, 1, 2, .....

Matching Eqs. (2-28) with Eq. (2-33) at wt = n, we have

R2 + R 1 = 0 (2-34)a

whose solution of R is

1 T TGFiR =- +T -TGFi (2-35)
a GFO

The significance of this result is that TGFi/TGFO is not a function of m,

since a depends only on y, A, and TGFO. It is interesting to note that

Eq. (2-22) and Eq. (2-35) have the same form, except that in the former

equation b is a function bf w, whereas in the latter equation a is not.

Figure 2-4 shows the TGF/TGFO versus eG/A characteristics for

several values of A. The maximum value that TGF reaches for all values

of w is the same. Figure 2-5 gives the TGF/TGFO versus eG/A.

characteristics with the eG axis normalized by Aw. From these curves,

it would seem that there is a .clear cut advantage in using the TGF/TGFO
versus eG/A characteristics with 6G = Acoswt as the input. Referring

to Figure 1-1, for describing function analysis, one difference between
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the use of eG and eG as the input to the nonlinearity is the linear

transfer function G(s) which the nonlinear element sees.

Table 2-1 gives a comparison of the expressions of TGF/TGFO

for the two types of inputs. , It is interesting to note that if A/m

in b is replaced by A, the expressions for TGF/TGFO differ only by a

sign for the two inputs. A similar effect is achieved by replacing

-A/w by A in Eq. (2-7) for eG, and A by -A in Eq. (2-6) for 0
G.

With the above changes,,the torque expressions for the two types of

inputs become identical. This means that the curves in Figs. 2-2 and

2-5 and those of Figs. 2-3 and 2-4 are identical for the corresponding

values of A/c and A, respectively.
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Table 2-1

= A sinwt 6 = A coswt

A
G cosw t eG = - A sinwt

TGF
TGFO

2k7"<wt R - a 1oswt) + R
2k( < 1t (1-coswt) - 1- R+

-(2k+) -+ (1-coswt) -+ (1-cosct)

(2k+lT:< wt R b R a( k+i)r< t - - (1-coswt) R + N21-coswt)

<(2k+2)Tr 2-(1-coswt) + R-l -coswt) + l

2yAT

GFOb a

+ R= T. +/
b ba a
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A More General CMG Frictional Nonlinearity Model

A more general expression which is valid for any input can be

derived for the CMG frictional torque characteristic. We start with

the square-law expression in Eq. (2-4),

dT
T GF - y(TGF -TGF )2  TGF < TGF (2-36)GF deG GF GFO GF GFO

where

TGF1 = TGFSGN(eG) (2-37)

Equation (2-36) can be integrated with respect to eG directly.

The results are:

(eG-eGi )Y(TGFi-TGFO)TGFO -TGFi
TGF (eG-eGi)y(TGFi-TGF O) - eG >0 (2-38)

-(eG-eGi')Y(TGFi+TGFo)TGFo-TGFi BG < 0 (2-39)
GF (eG-eGi)y(TGFi +Tf - 1 6 (

where

eGi = initial value of eG

TGFi = initial value of TGF

These expressions for the frictional torque are valid for any arbitrary

input eG and initial conditions at the beginning of the process.

When eG changes sign during the process, the proper expression should

be used, and the initial conditions should be appropriately matched at

the switching point. It is simple to show that when G Acoswt,
G A

eGi = , Eqs. (2-38) and (2-39) revert to Eqs. (2-12) and (2-18),

.respectively. Similarly, if eG = Acoswt and eGi = A, Eqs. (2-38)

and (2-39) become identical to Eqs. (2-28) and (2-33), respectively.
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3. A Continuous Describing Function for the Gimbal Friction Nonlinearity

In chapter 2 the nonlinear characteristic of the gimbal friction

is analyzed with sinusoidal inputs. It seems that there is an advantage

of using a cosine wave as the input, since, then, the frictional torque

saturation level is not a function of frequency. For analytical

purposes, the TGF/TGFO versus eG/A curves of Figure 2-4 seem to be the

most convenient to use.

In the last bimonthly report, No. 1-73, the gimbal frictional

nonlinearity is approximated by a four-sided polygon. In this section

a better approximation is made by the six-sided polygon shown in

Figures 3-1 and 3-2. It is apparent from Figure 2-4 that when the

input amplitude changes the slope k of the nonlinearity also changes.

The continuous-data describing function for the nonlinearity in

Figure 3-1 and 3-2 is now derived.

The input to the nonlinearity is a cosine waveform shown in Figure

3-1 and given as

eG = Ecoswt (3-1)

The output waveform of the nonlinearity as a function of. t i's shown

in Figure 3-1. The four parts of this waveform are described by the

following set of equations.

f(eG) = kEcos4 - kE 0 < < a1

= -M ao < <(

= kEcoso + kE < < a 2

= M a2 -  2n (3-2)

where

= Wt (3-3)

S = cos-I (1-M/kE) (3-4)

a2 = a" + (3-5)
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Figure 3-1. Linearized input-output relation of CMG nonlinearity.
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The Fourier series for the waveform of the output of the nonlinearity

is given by

f(t) = A0/2 + A coswt + B1sinwt

+A2cos2wt + B2 sin2wt + .... (3-6)

where the coefficients are given by

27
AN = 1/ f(t)cos(Nwt)dwt (3-7)

BN = l/T f(t)sin(Nwt)dwt (3-8)

N = 0, 1, 2, ...

Since there is no bias on the output signal from the nonlinearity, AO = 0.

If the higher frequency harmonics, N = 2, 3, ... , are neglected, the

output waveform is given by

f(t) = A1 + B1  cos(p- tan-IBl/A 1 ) (3-9)

The phas-or notation of f(t) is

F(jw) =, A + B exp[-jtan-1 1/A, (3-10)

The describing function of the nonlinearity is defined as

N(E)= F(jw)/E(jw) =A 1 + /E.exp[-jtan- B1/Al] (3-11)

= A1 /E - jB1/E

By using Eqs. (3-2).through (3-5) the coefficients in Eqs. (3-7)

and (3-8) are solved for N = 1 to yield

Al = kEcos- (1 - M/kE)/r

+ 2MkE M(M-kE)/kE (3-12)

B1 = -4M/T + M2/7kE (3-13)
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Describing Function Plots

When evaluating the describing function it is convenient to define a

normalized input amplitude H as

H = 2kE/M (3-14)

Using equation (3-14) in Eqs. (3-12) and (3-13) and dividing both sides

of these equations by E gives

AI /E =kcos-(l -2/H)/-+4k(l - H/2) H-i/H2 (3-15)

B1/E = -8k/Hr +4k/H 27 (3-16)

The above equations show that the describing function will depend

only on H and k.

Figure 3-3 shows the magnitude versus phase curves for -I./N(E)

for different values of the slope of the'nonlinearity, k. In these

curves the magnitude of the normalized input signal to the nonlinearity,

H, is varied from 1.0 to 100. When the magnitude of H becomes less

than 1, the gimbal torque characteristics decrease as shown in Figure

3-2. For these amplitudes of H, M is set to M = 2kE and the magnitude

and phase of 1./N(E) remains constant as H is varied. This can be

seen by substituting M = 2kE into equations (3-12) and (3-13).

A1/E = k (3-17)

B1/E = -4k/7 (3-18)
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4. Computer Simulation of the Simplified LST System

Since the describing function analysis of the CMG nonlinearity has

been given in the last chapter, a computer simulation of the LST system

is necessary to corroborate the analytical results. It should be noted

that the describing function analysis is carried out only for the

straight-line approximation of the nonlinearity as illustrated in

Figure 3-1. The simulation model of the nonlinearity also has the same

characteristics. Future work will include the derivation of the

describing function of the exact nonlinearity as modelled in Figure 2-1,

as well as a computer simulation with the exact model.

The simplified LST system is represented by the block diagram of

Figure 1-7. The linear transfer function which the nonlinear element

N sees is given by Eq. (1-16). The frequency-domain plot of G(s) is

plotted in Figure 1-8 in db versus phase coordinates. The portion of G(s) for

w = 2.5 to 6 is given in Figure 3-3. For k = 50,000 ft-lb/rad, the

G(s) curve intersects the -1/N(E) curve at a frequency of 5.1 rad/sec

and H = 9.. The saturation level of the gimbal frictional torque is set

at M = 0.078 ft-lb. Therefore, the corresponding amplitude of oscillation

of the gimbal position,E, is

E = MH/2k 7.2 x 10-6 rad.

For the computer simulation, the input to the LST system, x , is

set to zero, along with all the initial states, except for the vehicle

position 6v. The initial value of 0v is'set at 5 x 10-5 rad, which is
chosen so that the input signal to the nonlinearity, 6G, would be large

enough to cause the torque to saturate, while at the same time the

limiting value of the input signal given in [1] is not exceeded.
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To fully understand the results of the computer simulation of the

LST system it is useful to represent the computer modeling of the

nonlinearity by the flow diagram of Figure 4-1. Due to the inherent

memory of the nonlinearity it is necessary to initially define the

position of the last switching point and the last value of the velocity

before entering the flow diagram.

The following quantities are plotted from the simulation runs:

v = vehicle position (rad)

v = vehicle velocity (rad/sec)

eG = Gimbal position (rad)

wG = Gimbal velocity (rad/sec)

TGF = Torque output of the nonlinearity (ft-lb)

Error = Error input command (rad/sec) to the CMG

= X-Ko v - K1l v

Figures 4-2 through 4-7 show the plots of the above listed quantities.

It may be noted from the plot of TGF in Figure 4-6 that the system has

a sustained oscillation. This oscillation is not seen on the other plots

because of the large initial transients.. Figures 4-8 through 4-13 show

the continuation of Figures 4-2 through 4-7 with proper scales. These

figures show that the amplitude and frequency of the sustained oscillation

are quite close to the values predicted in Figure 3-3.

The simulation results show that the LST system is stable for smaller

values of k, such as k = 10,000.
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Figure 4.1. Computer flow diagram of CMG nonlinearity.
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5. A Describing Function of the CMG Nonlinearity

Using the Analytical Torque Equation

A describing function of the CMG frictional nonlinearity was

derived earlier using the straight-line approximated input-output

relation between the frictional torque TGF and the CMG angular dis-

placement BG-

However, it is possible to derive a describing function for the

CMG frictional torque using the analytical relation between TGF and 0G.
It has been established that the frictional nonlinearity of the CMG

can be described by the square-law relation.

dTGF 2
dOG = Y(TGFI - TGFO) (5-1)

where

TGFI TGF SGN(OG) (5-2)

TGFO saturation level of TGF

y = positive constant

Carrying.out the integration on both sides of Eq. (5-1) yields

G + I  + G > 0 (5-3)
y(TF - TGFO) 0

e + C - < 0 (5-4)G(T F + TGFO)

where C1 and C2 are constants of integration, and
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T+ F TGF > 0 (5-5)

TGF = TGF G < 0 (5-6)

Then, C1 and C2 are given by

C1  Gi + G > 0 (5-7)
Y(TC - T-G(TFi - TGFO)

C < 0 (5-8)
2  

0Gi
Y(TGFi + TGFO)

where eGi and TGFi denote the initial values of eG and TGF, respectively.

For a sinusoidal input, eG is represented by

eG = A cos wt (5-9)

It is important to note that for the input of Eq. (5-9) eGi = -A when

G >- 0, and eGi = A when G < 0.

Solving for TGF and TGF from Eqs. (5-3) and (5-4), respectively, we

have

GF (Acos+ T > 0 (5-10)GF y(A cos wt +  GFO

-1

TGF = y(Acos wt + C2 - TGFO G 1 0 (5-11)

with

C1 = A 1 (5-12')
Y(TGFi - TGFO)

C2 = -A - (5-13)
1 (5-13)

Y(TGF i + TGFO)

where
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TFi = TGFO +~ (5-14)

TGFi =TGFO + s ) (5-15)

a = 2yATGFO (5-16)

With the describing function method, the frictional torque TGF may be

approximated by the fundamental component of the Fourier series. The dc

component is zero, since the input-output relation is symmetrical

about the zero-torque axis.

Thus,

TGF = Al sin wt + B1 cos wt

A1 + B1 cos (wt - b) (5-17)

A
q = tan .- (5-18)

1

Al = TGF sin wt dwt = T  sinwt dwt

2T
+ TGF sinwt dwt (5-19)

B = 0 TGF coswt dwmt = TGF cosmt dwt
IT GF

-+ 7 TGF coswt dwt (5-20)

Substitution of Eqs. (5-10) and (5-11) into Eq. (5-19) gives
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A sin A dwt T T sint dwt1  7 0 y(Acoswt + C2 )sint dt - GFOsint dt

1+ 12  -1 1J
S y(A 1 sinwt dt + T sinwt dwt (5-21)

f r y(A coswt + qT GFO

A1 -Ay Zn (A coswt + C2 ) 2 TGF

+ In (A coswt + C) - 2TGFO (5-22)

Thus

A1 - + +n - 4 TGFO (5-23)

In arriving at the last expression it is noted that

C2  < -A

Cl > A

and C1 = -C2 over their respective ranges of G. Equation (5-23) is

simplified further to.

Al 4TG C2-A(C+A)

4 2 C1+A
- TGFO t+ - LC1-A]t (5-24)

Now substitution of Eqs. (5-10) and (5-11) into Eq. (5-20) yields

1 -1 1
B1  -Y[A coswt + C2cos7-t dt - - TGF coswt dwt

+F y[Acoswt + CI] coswt dwt + TGFO coswt dwt (5-25)
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Evaluating each of the integrals in the last equation, we have

0 TGFO coswt dwt = TGFO coswt dwt = 0 (5-26)

Since C2 < -A, C2 is always negative, and C22 > A2 , the first integral of

Bi becomes

11 j0 y(Acoswt+C2) cost dwt Ai 0

C2 fr dwt+ Acst+C2  (5-27)
iyA 0 Acoswt+C2

or

1 + C2 1tan (C2-A)tan(wt/2) '

1 -yA 2 t a

1 C2
= -* - (5-28)

YA AC 2-A2

where the fact that C2 is negative has been used. Also, tan 1r/2 is

taken to be +. since'wt/2 expands from 0 to u/2.

Similarly, the third integral of 81 in Eq. (5-25) is written

12 (Acos1t+C1  coswt dt

- C 2 t- (C1 -A)tan(wt/2) 2T
= l +2 tan 1

-1 I
= yA Y (5-29)

In arriving at the last equation, we have recognized that Cl > A and

have used that tan 7r/2 = -O, since in this case wt/2 expands from Tr/ 2 to ,r.

Thus,
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2 C2  C1B = II + 12 - yA +
1 1 2 yA A 2 2_2

221  1

LC 2 1 (5-30)

The describing function in complex form is written as

BI - j A
N(A) = A (5-31)

where Al and B1 are given by Eqs. (5-24) and (5-30), respectively. A

digital computer program for the computation of N(A) and -I/N(A) is listed

in Table 5-1. The constant A is represented by E in this program. The

parameters of the nonlinearity are:

TGFO = 0.1 ft-lb

y = 1.38 x 105

Figure 5-1 shows the magnitude (db) versus phase (degrees) plots of

-1/N(A) for y = 1.38 x 104, 0,69 x 105 , 1.38 x 105, 0.69 x 106, and

1.38 x 106, as the magnitude of A varies. Note that as A becomes

large, the magnitude of -1/N(A) approaches infinity and the phase

approaches -270 degrees. As A decreases, the magnitude of -1/N(A) decreases

and the phase approaches -180 degrees. In the limit as A-0, -1/N(A)

goes to -1/yTGFO

Asymptotic Behavior of -1/N(A) for Very Small Values of A

Figure 5-1 shows that as A approaches zero, the magnitude of

-1/N(A) in db approaches 20 loglo[1/yTGF02] and the phase is -180

degrees. The asymptoti'c behavior of -1/N(A) for very small values

of A is derived here analytically.
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Table 5-1

L
.100 " LST CONTI"NOUS DESCRIBING FUNCTION - EXACT CI:M NONLINERPITY

1. 000 CI:OMPLEX GVGNH16
1.500 RERAL8 PF'(20)> PIRADT GAMMRA ESTAPRT ,E.ARRsTGFI TGFN TGFP CI C2

sA1 B1
1.600 REAL*8 AZ
2.000 PI=3.14159
:3.000 RAD=180../PI
4.000 TO=.1
4.500 S=10.
5.000 GAMMA=SR1* .38E5
6.000. E:START=1.E-13
7.000 NP=2
3.000 ND=15
9.000 P(I)=1.
10.000 P(2)=5.
10.200 .PRITE (6,100)
10.400 WRITE(6 101)
11.000 DO 1 J=1,ND
12.000 DO 1 I=1,NP
13.000 E=ESTART*P( I )(10.*.:(J-1)
14.000 AA=2.*GAMMA+E*TO
15.000 R= (-1.. A) + SQRT((AA)Si(A. A+1 -AA*+AA ):
16.000 TGFI=R*TO
17.000 TGFN=TGFI
18.000 TGFP=-TGFI
19. 000 C1=E-1... (GAMMA*(TGFP-TO)
20.000 C:2=-E-1 ./ (GAMMA* TGFN+TO)
21.0O0 A1=(-4.*TO/PI)+<1..'(PI+68MMA+E)> ))LOIG( ((CI1+E>*(C2-E)/ .- (C1-E),*%
21.100 (C2+E)))
21.500 AZ=DLOG( (C 1 +E)>*(.C2E)/((CI-E)(C2+E>)>
21.600 AI=(-4.*TO/PI)+(:AZ,(P I +AMMARE>>
22.000 B1=(-1 ./(GAMMA*E> >*(2 .+C2/DSQRT(CC2C2-E*E>-C1/DSQRT(C1*C1-E*E)) >
22.100 Al=A1'E
22.200 B1 =B1/E
23.000 GN=DCMPLX(B1 ,-A)
24.000 V=-1.1N
25.000 G1=REAL(G)
26.000 G2=AIMAG(GV)

7.000 'MAG=CABS(GV)
28.000 GDB=20.ALOGIO0(GMAR6
29.000 GPHASE=RADATAM2(62Gl 1)
30.000 IF(GPHRSE.GE. O.)GPHASE=6-HSEL-3_,.60.
:33.000 , 4WR I TE ( 6,102 )E ,TGFI :pSGPHBSE,GDB ,SGMRG
:34.000 1 CONTINUE
:35.000 100 FORMRT(' CONTINOUS DESCRIB , FUNCTION FOR CMG NDNLINEARI

TY'"
36. 000 101 FORMAT 5- ,8X 'E' 11 X TGFI'p 1OX i.' PHASE I OX " DB' "9X'M AGN ITUL

DE'!)
:37.000 102 FORMAT(1P5E14.5)
39.000 STOP
40. 1000 END
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Dividing both sides of Eq. (5-24) by A and expanding the loga-

rithmic term into a power series, we have

Al1  4 4 A A3  A5
A- GFO + 2 3 -7

4 4 13
rAGFO A ~ + (5-32)

C C1

Taking the limit on both sides of Eq. (5-32) as A*O, and using the

fact that

Am C1  YTGFO (5-33)

we have

1 1

AtimA[ --  I 4  CT -I- A A3

= Lm E TGF GFO + T+ GFO3
A+O u tA GFO y A w

Substituting Eq. (5-33) into the last equation we have
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im = m - 2TGFO + A2y4TGF 5 + ... = 0 (5-34)
A--I A' O T

Dividing both sides of Eq. (5-30) by.A and taking the limit as A

approaches zero, we have

e~m = m 2 2A to A+O yAF A
A- A+0OyA2~ C2-A 2

= £m 2 1 1 (5-35)

A-- (A/Cl)

Expanding 2 -1/2
Expanding [1 (A/C1) 2 1/2 into a power series, and using only the

first two terms, Eq. (5-35) becomes

B 2 A .

A+im A AO YA2 2

1 2

- yC T2 GF  (5-36)

Thus,

-Zm l/N(A) = 1 1 2
A-*O A+O B1 (5-37)TA YTGFO

As shown in Fig. 5-1, the gain-phase plot of -1/N(A) as A approaches

zero is a point which lies on the -180 deg line with a magnitude of

20 logl0[1/yTGF02
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Asymptotic Behavior of -1/N(A) For Very Large Values of A

For very large values of A, the value of C1 becomes

t m C = ~i [A + 2 (5-38)
A-m YGFO

Then

£im A--= £m 4 T + 2 A A3+im A m 7TA GFO +y C A C3 C

= im TGFO = -0 (5-39)

Similarly we can show that

m = +0 (5-40)

Thus,

eim I/N(A)] -j/O =co:270 (5-41)
Am

As shown in Figure 5-1, the gain-phase plots of -1/N(A) approach

-1-2700 as A for all values of y and TGFO.
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6. Computer Simulation of the Simplified LST System with the

Analytical Torque Expressions

A computer simulation of the LST system is presented here to

corroborate the results of the describing function analysis of the

last chapter. Since the describing function analysis has been carried

out with the analytical torque expressions for the CMG frictional

nonlinearity, the simulation model of the nonlinearity also has the

same characteristics. This model of the nonlinearity is implemented by

using the expressions for TGF in Eqs. (2-38) and (2-39) with initial

conditions for e G and TGF being redefined each time a sign change in
occurs.

G
The simplified LST system is represented by the block diagram of

Figure 1-7. The linear transfer function which the nonlinear element NL

sees is given by

2G(s) = V 2
JGJ V +JKpS +JVKI s 2 +KI HKI s+KI HK0

Two sets of numerical values are considered as follows:

System 1 System 2

vlO10s 10O

JG 2.1 3.7

Kp 216. 280.

KI  9700. 10000

H 600 200

K1  1371.02 3000

KO 5758.35 20000
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The frequency-domain plots of G(s) for both systems are given

in Figure 6-1 in db versus phase coordinates. Figure 6-1 also

contains the -1/N curves of Figure 5-1 for y = 1.38 x.10 5 ,

1.38 x 106 and. 1.38 x 10.

With y = 1.38 x 10I, the -1/N curve intersects the G(s) curves

of the two systems at two points each. Among these the stable points

for sustained oscillations are the ones on the left at the higher

frequencies. The approximate magnitudes and frequencies of the

oscillations.are 6 x 10-6 rad and 4.4 rad/sec, respectively, for

system 1, and 2 x 10- s rad and 5.6 rad/sec, respectively, for system

2. The curves in Figure 6.1 also show that for y considerably smaller

than 1.38 x 107, both systems will exhibit a stable response, although

for certain values of y system 2 will show sustained oscillations.

while system 1 is stable.

For the computer simulation, the input to the LST system, X,

is set to zero, along with all the initial states, except for the

vehicle position eV. The initial value of eV is set at 5 x 101

rad, which is chosen so that the input signal to the nonlinearity,

8G , would be large enough to cause the torque to saturate, while

at the same time the limiting value of the input signal is not

exceeded.

The following quantities are plotted from the simulation runs:

v = vehicle position (rad)

WV = vehicle velocity (rad/sec)

G =. Gimbal position (rad)



62
-50 - - --- -7

-50

-' f ;5,o 10o ...... . .. .-s10
-1 0 _

+ - --- sxto 1 38x0: i - s

x - -- =11 .. 38x10-0 _

._1

- -s x o- -S si1 . 3

{ 2

-100 38x10

.... 
x , 

.

_:: _-... .. -- 0

-120

6

I - ' : : + + " + .  .. ... ...... .

" 1 i-

t yo I x 0. 9

-260o -2400 -220 -20 ° 12000 I80 °  - 60

F.gure 6

.0 .5 . 5.5

-260U )2400 -2200 -2000 -1800 -1600



63

WG= Gimbal velocity (rad/sec)

TGF = Torque output of the nonlinearity (ft-lb)

Error = Error input commandf&(rad/sec) to the CMG

= X - KoV K1WV

Figures 6-2 and 6-3 show the plots of the:above listed quantities

for system 1 .with y-= 1.38 x 10'. It may be noted from the plot of TGF

in Figure 6-3 that the system -has a sustained oscillation. This

oscillation is not seen on the other plots because of the large initial

transients. Figure 6-4 through 6-5 show the continuation of Figures 6-2

and 6-3 with proper scales. Figures 6-6 and 6-7 show the response plots

for system 2 with y = 1.38 x 10, and Figures 6-8 and 6-9 show the

continuation of these plots with proper scales. The frequencies and

magnitudes of oscillations obtained with the two systems are quite

close to the predicted values. The small discrepancy is attributed to

the discretization of the nonlinearity implementation on the digital

computer.

Figures 6-10 and 6-11 show the response plots for system 1 with

y= 0.69 x 107 and their continuations are shown in Figures 6-12 and

6-13, respectively. Figures 6-14 and 6-15 show the response plots

for system 1 with y = 1.38 x 10s . As predicted, the system is stable

for both of the lower y values.
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C System 1 y = 1.38 x10 7
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System 1 y = 1.38 x10 7

TIIME

LA.
CD

0.00 1. 50 3.. 00 .50O 6.00 7.50 9.00
TIME
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System 2 y = 1.38 xlO'
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System 2 y = 1.38 x10 7
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System 2 y = 1.38 x10 7
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System 2 y = 1.38 x107
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Figure 6-9
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L0
System 1 y = 0.69 xlO 7
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System 1 y = 0.69 x10 7
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Figure 6-11
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System I y = 1.38 x10 s
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System 1 y = 1.38 xlO 5
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7. Transfer Functions of the Sampled-Data LST System

Since the actual LST system has sample-and-hold between the vehicle

controller and the CMG controller, the system should be modelled as a

sampled-data control system. Figure 7-1 shows the block diagram of the

simplified LST system with sampled data. Since it is necessary to

isolate the CMG nonlinearity from the linear dynamics for analytical

purposes, a sample-and-hold is inserted in front of the nonlinearity

as an approximation.

Referring to Figure 7-1, the following equations are written

using.e*, eG* and 0V* as outputs.

e* = (GX)* +N[GhoG G6G7 Gho G2 3G6G7 e* (7-1)

N o 617*G+ho GhOG2G 3  *
S 6ho 23 e* (7-2)

e* GhoG2G3G 71 * - N* GhoG6G 0]* (7-3)

where the symbol * denotes the z-transform operation, and N* represents

the discrete describing function of the CMG frictional nonlinearity;

A0  1 + G3G 6  (7-4)

Equations (7-1) through (7-3) are portrayed by the sampled signal flow

graph of Figure 7-2. Applying Mason's gain formula to this flow graph

yields the determinant of the graph as



G. Gho G2  G3  G6  G7
K +K e zoh KI G H

ST Ks+K

SGF

CMG Nonlinearity Gho

Figure 7-1. A block diagram of the simplified LST control system with sampled data

'.O
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Figure 7-2. The Sampled Signal Flow Graph for the Equivalent System.
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A= oG6 * [GhoG6G7Gl* GhG 2 G3G6I - 1 N*

*[G G2 3G6G GhoG6 hoG1G2G3 6G (7-5)

The last equation is put into the form of (with N(z) = N*)

1 + N(z)G(z) = 0 (7-6)

where

AG(z) (z)-A 2 .(z)A3 (z)+A 4(z)A1(z)
G(z) = l+A4 (z) (7-7)

Al(z) = (1-z'1)f 6 (7-8)

-1 G6G7G1A2 (z) = (1-z- ) s s 0  (7-9)

A3(z) = (1-z ) b6 (7-10)

1 G G2G3G6G 71A4(z) = (1-z- ) S 0 (7-11)

Substitution of the system transfer functions into the above expressions

yields 2
JG 2+K s+K0  2 ... I (7-12)

A() (1-z1  JGs3+K +Ks (7-13)

A2 (z) = (z-1 ) H(KO+K1s) I (7-14)

Vs (G, +ps+
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A3(z) = (1-z- I(7-15)
(fs2J2+K +K )

1 KIH(Ko+KIs)
A4(z) = (1-z

-l )  (JG K+K ) (7-16)

v .(jGs2+K s+K)

The following system parameters are used for System 1:

H = 600 ft-lb-sec

JG = 2.1 ft-lb-sec2

KO = 5.75835 x103

K1 = 1.37102 x 103

Kp = 216 ft-lb/rad/sec

KI = 9700 ft-lb/rad

Jv = 105  ft-lb-sec
2

Taking the z-transf6rms of the functions inside the brackets in

Eqs. (7-13) through (7-16), we have the following results:

= + A + A _-1 (7-17)
z-e z-l

a = . 51.429993- j44.42923

a = -.51.429993 + j44.42923

A13 = 1.0309376 x 10-4

A14 = - 5.15469 x 10- 5 - j5.9669183 x 10-5 ,

A15 = -5.15469 x 10- 5 + j5.9669183 x 10-5

T z- + AA2(z) -A22 --T + A2 3 +A 4 T+ A 25 zzeTr (7-18)
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A22 = 3.5616776 x 10
-3

A23 = 7.6870434 x 10-4

A24 = -3.8435217 x 10- 4 - j4.8499764 x 10- 4

A25 - 3.8435217 x 10- 4 + j4.8499764 x 10- 4

T + z-1 Z-1
A3(z) = A32 Z - A33 + A34  aT + A35  (7-19)

z-e z-e

A32 = 1.0

A33= -2.2268891 x 10-2

A3 4 = 1.1134446 x 10-2 + jl.6350537 x 10-3

A35 = 1.1134446 x 10-2 - jl.6350537 x 10-3

AT 2 (z+) + A T + A -1 + A -1

4 41 2(z-1) 2  
4 2 z-144 aT 45z-

(7-20)

A41 = 34.54837

A42 = 7.4564409

A43 -0. 17352653

A44 = 8.6763263 x 10-2 + jl.6520832 x 10-2

A45 = 8.6763263 x 10-2 - ji.6520832 x 10-2

The following system parameters are used for System 2. The

same expressions for A1 (z), A2(z), A3(z) and A4(z) are preserved.

H = 200 ft-lb-sec

JG = 3.7 ft-lb-sec2

K0 = 2 x 104

K = 3 x 103
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Kp = 280 ft-lb/rad/sec

KI = 04 ft-lb/rad

JV = 1 0 5 ft-lb-sec2

The corresponding coefficients in Eqs. (7-17) through (7-20)

are

a = -37.83783 - j35.651077

a = -37.83783 + j35.651077

A13 = 9.9999976 x 10-5

-5 -5
A14= -4.9999973 x 10 - j5.3066848 x 10-

A15= -4.9999973 x 10-5 + j5.3066848 x 10- 5

-3
A22 = 3.9999932 x 10

A23 = 4.8799929 x 10-

A24 = -2.43997 x 10 - j3.150655 x 107124

A25 = -2.43997 x .10 4 +j3.150655 x 10-

A32 = 9.9999982 x 10

-2A33 = -2.8 x 10

A34 = 1.4000002 x 10- 2 + j8.3391555 x 10- 4

A35 = 1.4000002 x 10-2  j8.3391555 x10-

A4 1 = 39.999985

A42 = 4.8800011

A = -1.5144014 x 1043

A44 = 7.5720072 x 10-2 + ji.1923421 x 10-2

A45 = 7.5720072 x 10-2 -l 1.1923421 x 10-2

It can be shown that if T approaches zero, the z-transfer function

G(z) in Eq. (7-7) reverts to that of the continuous transfer function

G(s) of Eq. (1-16).
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The G(z) plots for system 1 and 2 are shown in Figures 7-3 through

7-6. Since these plots are to be used for predicting the existence of

self-sustained oscillations in the sampled-data system, the frequency

of oscillations is expressed as an integral multiple of the sampling

period T. Thus, the frequency of oscillation is represented as

27r (7-21)
c NT

for N = 2, 3, ....

The various plots of each system correspond to different values of

N, with T as a parameter. Figures 7-3 and 7-5 are for lower values of

T where as Figures 7-4 and 7-6 are for higher values of T.

Notice that for large N and small T, the G(z) curves approach that

of the continuous system transfer function G(s).
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8. The Discrete Describing Function of the CMG Frictional Nonlinearity

In order to study the condition of self-sustained oscillations

of the LST system with sampled data, it is necessary to evaluate

the discrete describing function of the CMG frictional nonlinearity,

N(z).

The first step in the derivation of N(z) involves the inter-

changing of the positions of the nonlinearity and the zero-order

hold in Figure 8-la. This step is justified since the nonlinearity

is amplitude dependent only, so that the signal of TGF is not affected

by this interchange. Figure 8-1b illustrates the transposition

between NL and zoh.

The second step involves the assumption that eG is sinusoidal;

that is,

eG(t) = Acos(wt + @) (8-1)

where A, w, and 0 denote the amplitude, the frequency in radians,

and the phase in degrees of the sinusoid, respectively.

The z-transform of eG(t) is

SG(Z) = J Acos( -+ *)z - k  (8-2)
k=0O

or in closed form,

Az[(z - cos -)cos - sin sin,]
G(z) = 2  2 cos (8-3)

G(2) z 2  2zcos-r + 1
N
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T

(a)

NL zo h

(b)

Figure 8-1

An important consideration is that because of the periodic

nature of the sampler, OG(t), 8G*(t), and TGF*(t) are all periodic

functions of period NT, where N is a positive integer >2.

Therefore, w = 2r/NT, and wT = 2T/N.
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The output of the nonlinearity in Figure 8-lb is denoted by

TGF*(t), and its z-transform is TGF(z). The discrete describing

function (DDF) of the nonlinearity is defined as

TGF ( z )

N(z) = G(z) (8-4)

It turns out that the discrete describing function (DDF) for

N = 2 must be derived separately, and a general expression for N(z)

can be obtained for all N > 3.

The DDF for N = 2

Let TGF(kT) denote the value of TGF*(t) at t = kT. For N = 2,

the signal TGF*(t) is a periodic function with a period of 2T. The

z-transform of TGF*(t) is written

TGF(z) = TGF(O)( + + z-4 + ... ) + TGF(T)(z-1 + z-3 ...)

TGF(O)z2 + TGF(T)z
2 (8-5)

S- l

For the CMG frictional nonlinearity, it has been established

in chapter 2 that

R+ 1- ~{1 - cos(wt + 4)]

TGF(t) TGFO 1 t G <e 0 (8-6)
R + 1 2 ( +
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R + {1 - cos(wt +)]
TGF(t)= TGFO 1 + 0 (8-7)

R -1 + - cos( +

Let us introduce the following notation:

TGF(kT) = TGF(t)tkT G < 0  (8-8)

TGF (kT) = TGF(t)It=kT OG > 0 (8-9)

We have,

R a 2rk
T-(T) = T R+ 1 -{ - cos(-- + N )]

TGF (kT) T FO 1 a 2'k G < 0 (8-10)
R + t 1 - cos(- + 4)]

S+ [ - cos(2k +
GF(kT)= TGFO 1 2k- G (8-11)

R + - - cos(2rk + )]

For N = 2, ( f /2)

TGF(O) = TGF-(O) 0 < <

GF(0) w<2r

(8-12)
TGF(T) = TGF (T) 0 <_ < 7

=TGF-(T) a< < 2f
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Substituting N = 2 into Eq. (8-3), we have

eG(Z) = Azcos (8-13)

Using Eqs. (8-5) and (8-13), the DDF for N = 2 is determined,

N(z) =TGF(O)z + T GF(T)
A(z - )cos

Also, for N = 2, z - -1, the last equation' becomes

TGF(O) - TGF(T)
2Acos8

For stability analysis, we define

1 2AcosOF(z) = - TGF(T) - TGF(O) (8-16)

The DDF for N >3

In general, the z-transform of the output of the nonlinearity may

be written as

SN-l
TGF(Z) m=O TGF(kT)z- k-mN

m=0 k=0

N-1
I TGF(kT)zN-k

k=O N 
(8-17)
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Using Eq. (8-2) for 6G(z), the discrete describing function

N(z) is written

N-N
T ( TGF(kT)z
GF(z) k=O (8-18)N(z)= -- (z) N m 2rk -k
OG (z - 1) . Acos(-jN + 7 )z

k0

The denominator of N(z) may be simplified as follows:

N 2rk -k + *w - -k 27rk(z - 1) C Acos( N + *)z A zcos(z + -AC cos( + )
k=O k=0 k=O

A i cos(2k + )zkl (8-19)
k=O

Thus,

N-I

STGF(kT)z
N-k -1

N(z) = N-k= (N > 3) (8-20)

A cos( N -+ )zN-k-
k=0

As an alternative we may expand zN - 1 as

N-l
zN - 1 = (z - ej2 k/N) (8-21)

k=O

Then, using Eq. (8-3) for 6G(Z), N(z) is written
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N-iNk 2 2w

N-TGF(kT)zN'k[z2 - 2zcos- + 1]
k=O (8-22)

N(z) N-l

(z - e 2  )k/N)Az[z - cosV)cost- sin sin]
k=O

For N = 3, N(z) is simplified to

TN(z) GF()z 2 + TGF(T)z + TGF(2T)
N(z) = A(z - l)[(z + 0.5)cos - 0.866sind] (8-23)

For N > 3,

N-1
TGF(kT)zN-

k- 1

N(z) =N-2 k0 (8-24)

A(z - 1) (z - ej2-k/N)[(z - cos.)cos sin in ]
k=2

where in general,

TGF(kT) = T (kT) 0 < k + < (8-25)

+ 27rkTGF (kT) < N+ < 2

where 0 < (2wk/N + ) 1 2T must be satisfied by appropriate conversion

of the angle 2rk/N + .

For stability studies the critical regions of F(z) = -I/N(z)

should be constructed for N = 2, 3, ..., with 4 varied from 00 to

3600, and A from 0 to infinity.
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The following theorems on the properties of -1/N(z) are useful

for simplifying the task of the construction of the critical regions.

Theoem 8-1

For any integMaZ N, the magnitude and pha6e o6 -1/N(z) repeat

jor every 4 = 27/N radian4.

Proof: The negative inverse of the discrete describing function

is written

27r - in(zN - 1)
1 -A[(z -co )cos sin in](zN - 1)

F(z) =- N- N-k-1 (8-26)

TGF(kT)zN-k- (z2 - 2zcos2 + 1)

Let

F1(z)F2(z)
F(z) =F 3(z)F4(z) (8-27)

where

27T 2nF1(z) : -A[(z- cos -)cos ,- sin jsino] (8-28)

F2(z) = zN - 1 (8-29)

N-1
F3 (z) = TGF(kT)zN-k-1 (8-30)

kF4() = (z- 2zos ) (8-31)=0

F4(z) =(2-2zcos- + 1) (8-31)
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Let

F(z N  [F(z)] = + 2/N (8-32)

Fl(z)N = [F,(Z)] 4 = 4 + 2/N (8-33)

F3(z)N = [F3(z)]o = 0'+ 2w/N (8-34)

Then,

F(z) FI(z) F3(z)N (8-35)SF(z)N- F 3(z) F1z)NI

and

Arg[F(z)] - Arg[F(z)N] = Arg[Fl(z)] - Arg[F 3(z)]

- Arg[Fl(z)N] + Arg[F3(z)N]  (8-36)

Also,

IFl(z) = Asin -nL (8-37)

FI(z)NI= AsinT I F (z)I (8-38)

Let us express F3(z)N as
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N-1 Nk-
F3(z)N I= TGF(kT)Nz -k- (8-39)

k=O

where

TGF(kT)N = [TGF(kT)] = + 2n/N (8-40)

It can be shown that for any integral N,

N-l

F3(z)N = zF 3 (z) = 1 TGF(kT)zN-k  (8-41)
k=O

Then, Eq. (8-35) becomes

F(z) F3(z)N zF3(z)iF(z -3l
=  3cF _ = 1 (8-42)

The arg'ument of Fl'(z) is

Arg[F1 (z)] = - T/2 (8-43)

Then

Arg[Fl(z)N] = 0 - i/2 + 2T/N (8-44)

Thus, Eq. (8-36) becomes
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ArgF(z)] ArgF(z) Arg[F3(z)] + Arg[F3(z)N]

27 - Arg[F 3(z)] + Arg[zF3(z)]

N Arg[F3(z)] + -+ Arg[F3(z)]

= 0 (8-45)

Q.E.D.

As an illustrative example of Theorem 8-1, let us consider the

case of N = 4.

Let = TGFA = K

Then

TGF-(kT) R + K(R + 1)[cos(b + 2k/N) - 1 (8-46)
GF 1 - K(R + 1 [cos(O + 27k/N) - T] GFO (8-46)

T+ R - KR - 1cos(¢ + 2rk/N) - 1
GF 1 - K(R - 1Lcos + 2k/N - j GFO

For 0 < ¢ <,

F3 (z) = TGF (O)z3 + TGF (T)z2 + TGF(2T)z + TGF(3T) (8-48)

F3(z)N = TGF(O)Nz3 + TGF +(T)Nz 2 + TGF (2T)Nz + TGF(3T)N (8-49)

It is easy to see that
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TGF-(O)N = TGF-(T)

TGF (T)N = TGF+(2T)

(8-50)

+ +
GF (2T)N GF(3T)

TGF-(3T)N = TGF-(0)

which proves that F3(z)N = zF3(z).

Similar results are obtained for v < 4 < 27r.

Theoatem 8-2

Fox odd N (N > 3), the magni;tude and phabe oj -I/N(z) repeat

o,% eveJty / = /N.

Proof: Let F(z)N, Fl(z)N, F3(z)N now be defined as F(z),

Fl(), and F3(z) with @ replaced by * + Tr/N, respectively.

Then,

Arg[F1(Z)N T- + (8-51)

Arg[F(z)] - Arg[F(z)N] = - -+ Arg[F3(z)N] - Arg[F3 (z)] (8-52)

Using the same notation as in Theorem 8-1, it can be shown that

for odd N > 3,
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F3 (Z)N = -z-(N- 1 )/ 2 F3 (z) (8-53)

Thus,

Arg[F 3(z)N = - 2 + Arg[F3 (z)]

= + Arg[F3(z)] (8-54)

Again,

F(z) F3(z)N = 1 (8-55)
F(z)NJ F3 z) 1

and

Arg[F(z)] - Arg[F(z)N] = - + Arg[F3(z)N] - Arg[F 3(z)]

= 0 (8-56)

Q.E.D.

As an illustrative example of Theorem 8-2, consider the case N = 3.

For 0 < <,

F3(z)= TGF (0)z2 + TGF (T)z + TGF (2T) (8-57)

F3(z)N = TGF-(O)Nz2 + TGF +.(T)Nz + TGF (2T)N (8-58)

It can readily be shown that



103

TGF-(O)N = TGF (2T)

TGF (T)N = -TGF (0) (8-59)

TGF (2T)N = -TGF'(T)

To carry out one of the identities above,

R K(R- 1)cos( + ) - 1 R + K(R - l)(cos + 1)TGF-(T)N = TGFO - K(R - 1)[cos( + ) - 1 1 + K(R -'1)(cos + 1)TGFO

(8-60)

R + K(R + 1)(cos - 1 (8-61)
TGF-(O) = TGFO 1 - K(R + 1)(cos 4 (8-61-

Using the relation, R2 +R/K- 1 = 0, we have

TGF (T)N = -TGF (0) (8-62)

Thus,

F3(z)N = -z-1F 3(z) (8-63)

The significance of the last two theorems is that the critical

regions of -1/N(z) need be computed only for 00 < < 7/N for odd

N, and 00 < < 2r/N for even N.
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Theotem 8-3.

Aympotic Behavio o6 -1/N(z) as A appoaches infinity.

(a) Ziml-1/N(z) l  (8-64)
A-

(b) For even N > 4, 0 < < 2r/N.

£im Arg[-I/N(z)] = ( -i-) + (8-65)
A+2

For odd N > 3, 0 < < T7/N.

tim Arg[-I/N(z)] = (1 - -) + (866)
A-OO

(c) For N =2 0 < 4 <

tim Arg[-I/N(z)] = 00 0 < 7 <./2
A-)

= ' T/2 < < 1 (8-67)

(d) For N = 3 0 < ¢ < w/3

5Tr
£im Arg[-1/N(z)] = - + € (8-68)
A-,.

Proof:

We can easily show that

ZZm TGF'(kT) = -TGFO G 0 (8-69)

+im T RGF(kT) = TGGFO G > 0 (8-70)ZimTG ( GF
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The magnitude of -1/N(z) is directly proportional to A as A

approaches infinity; thus (a) is proved.

For N = 2 0 < @ < w/2

F(z) = -1/N(z) = TGF cos (8-71)

Thus,

VA Arg[F(z)] = im Arg 2AosT

2Acos o

A+- A-1- GF TGF(0)

=Arg cos 0 0 < < /2
2TGFO

= 7 r/2 <,@ < (8-72)

This proves item (c).

For N = 3 0 < c < w/3

F(z) = -A[(z + 0.5)coso - 0.866sin4](z - 1) (8-73)
TGF(O)z2 + TGF(T)z + TGF(2T)

Z1m Arg[F(z)] = - e- m Arg[TGF(0)z2 + TG(T)z + T(2T)] +
-A- GF GF

57r--+ - (8-74)

This proves item (d).
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For N > 4 and even 0 << 21r/N

Using Eqs. (8-27) through (8-31), we have".

tim Arg[F(z)] = A&m Arg[F,(z)] + Arg[F2 (z)] - Arg[F 3(z)] - Arg[F4 (z),]
A7T

= - - m Arg[F3(z)] + Arg[F2 (z)] - Arg[F4(z)]A-
(8-75)

N-2
Arg[F2 (z)]- Arg[F4(z)] = Arg[(z- 1) 1 (z - j21k/N)

k=2

= Arg[e/N(eI /N- e -j/NN2ej2/N(1 - ej2)/N(k-1))] (8-76)
k=2

Arg[F2(z)] - A F4(z) Arg[e/N(eJ/N - e-J/N)(eJ2/N)N-3N3(1 - ej2nk/N)
k=l

T + (N + N-3 kN
+ (N - 3)( ) + Arg N e k/N(e-Jk/N e+j7rk/N

k=il

7T)2 7 N-3
= + (N - 3)(27) + (N - 4)(- ) + k k n (8-77)N k1

N-1
t£m Arg[F3(z)] = tim Arg I TGF(kT)zN'k-l
A-*- A k=O
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N12A - TN-k-i N N-k- I= Arg I - TGFOz + Arg TGFOzkI
k=O k=N/2

N/2- I (N 1 )T
= Arg -T GFOZNkI (8-78)

k=O =GO N 2 N

Thus,

2n" N -3
tAmn Arg[F(z)] = + -+ (N- 4)(- T) + (N- 3)()+ N-3

AN k=l 2 N

2 N k=N+O- (3 - + k

( - + (8-79)

For N > 3 and odd 0 < <I /N

For this case,

(N-1Y2 N-1
A (m Arg[F(z) - Arg TGFN-k- + Ar zN-k-

P3 l Arg T - TGFTz
A k=O k=+1)/2 GFO

= (N - 3)7
2N (8-80)

Thus,
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N-3 kit (N )3)(&m Arg[F(z)] = - + + (N - 4)(- -) + (N - 3) + (N 2N

N 7 N k
= (3 N- + T N +k=

= (1- )- + * (8-81)

and (b) is proved. Q.E.D.

Theotem 8-4.

A ymptotic Behavio4 oj -I/N(z) as A appoache. zeAo.

tim F(z) 2 (8-82)
A-0 YTGFO

for all P and all N.

Proof: From Eq. (8-20), for N > 3,

N-l1
-A I cos(2--+ )z

I k=O
F(z) = - N-= (8-83)

k TGF(kT)z
N-k-1

k=0

N-lS 2kw N-k-i
- I cos( N -- + )z

= k=0
Zim F(z) - N-1 T (kT)
A+O GFk0 N-k-1

AO k= A
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N-1N oi 2k+ ) N-k-l
- X cos( + j)z
k=O
N-I T (kT) (8-84)

k1O AO* A

TGF (kT)Therefore, the problem is that of finding T km AT)A+0

First, let TGF(kT) = TGF-(kT). Then

T F(kT) R 27k+
m TG F (kT) m T A(R +1) - YTGFO + YTGFOcoS(2 +

A TGF0  2rrk 1A-+0 AO YTGFA - yTGFAcos( + + 1) +

T t Rim R T 2  (8-85)GFO A(R 1) GFO2[S( + ) ] (8-85)

.where the fact that Uim [1/(R+ 1)] = 1 has been used.
A O

Um R R+im I T GFOl+

A O AA A- O 2 TGFA 4 2T GFO2A2  (8-86)

Or,

A(R 1 i) 1 1+ 4y 2T 2A2 (8-87)
A-+O A(R + 1) A-*O A 2YTGFOA 2 YTGFOA GFO



Expanding/1 + 4y2TGF 2A2 into a power series, and using only the

first two terms, we have,

R 4y2T 2A2
im R 1 4GFA = yTGFO (8-88)

A-$3 A(R + 1) A-*O 4YTGFO A GFO

Thus,

TGF- (kT)

Aim A yTGFO + YTGFO2[cos(2T-- + ) - 1]

2 21k=.YTGFO cos( N + ) (8-89)

Similarly, it can be shown that

TGF (kT) T (kT) 2 2wk

AYm A A-O A YGFO cos( + 4) (8-90)

Now,

N-1cos(2k + zN-k-1- cos( N + 4)z
rim F(z) k= (8-91)

A-2 2 2srk )zN-k-1 yT 2
YTGFO cos( N + 4)z GFO

k= N > 3.

for all 4 and all N > 3.



For N = 2,

Rim F(z) = Tim (T) (0)
A-+O A-+O TGF T-TGF 

Rim 2A cos R
R R

AO T R-1 + yTGFOA(l+cosO) - yTGFOA(l-coso)
GFO 1 T lS+ l+cos GFO 1+

R-1 yTGFOA( 1+co-) R+ YTGFoA(l-cosp)

1 2 (8-92)

YTGFO

Q.E.D.
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9., Discrete Describing Function Plots of the CMG Frictional Nonlinearity

The discrete describing function, N(z), for the CMG frictional

nonlinearity is derived in Chapter 8 for integral values of N >2.

The plots of -1/N(z) together with that of G(z) in the frequency-domain

allow the study of the condition of self-sustained oscillations of the

LST system with sampled data.

For N = 2, the expression for F(z) = -I/N(z) is given by Eq.'(8-16).

Figure 9-1 shows the F(z) plot for N = 2 in the gain-phase coordinates

with 0 < A < m and various values of 4. The value of y is 1.38x10 5 . Note

that the plot stays on the -1800 and -'3600 axes.

In general, N(z) for N > 3 is given by Eq..(8-20). Figure 9-2 shows

the gain-phase plot for F(z) when N = 3. The curves for several values of

0 are plotted to illustrate the effect of varying the phase of the input

signal to the nonlinearity. It should be noted that the values of F(z)

repeat every 60 degrees starting from p = 00. As the magnitude of the

input signal, A, approaches infinity, the bounds of F(z) are at -2400

and -3000.' Figures 9-3 and 9-4 illustrate the F(z) plots for N = 4 and

N = 5, respectively. For N = 4, the F(z) plot extends from -3150 to

-2250, and for N = 5, the span is from -2880 to -2520.

For stability analysis, it is sufficient to consider only the

bounds of the F(z) plot for a fixed N. Self-sustained oscillations

characterized by N may occur if G(z) intersects with any part of the

F(z) plot. The region bounded by all the F(z) curves for a given N is

defined as the "critical region". In Figure 9-5 the critical region for

N = 6 is shown, without showing all the curves of F(z) for various

values of 0. Similarly, Figures 9-6 through 9-8 show the critical regions

for N = 8, 20, and 50, respectively. The general shape of the critical
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regions for other values of N is easily visualized. Furthermore, Theorems

8-3 and 8-4 on the asymptotic behavior of F(z) as A +- and A - o are useful

in generating the critical regions. It is interesting to note that as N

approaches infinity, F(z) approaches -1/N of the continuous-data non-

linearity, as shown in Figure 9-8.
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10. Computer Simulation of the Simplified Sampled-Data LST System

with the Analytical CMG Frictional Torque Expressions

A computer simulation of the Sampled-Data LST ,System is presented

here to corroborate the results of the discrete describing function

analysis of the last two chapters. Since the analysis has been carried

out with the analytical torque expressions for the CMG frictional

nonlinearity, the simulation model of the nonlinearity also has the

same characteristics.

The simplified sampled-data LST system is represented by the block

diagram of Figure 7-1. Although for analytical convenience the

discrete describing function analysis has been carried out with two

samplers present in the system, the actual system has only one sampler.

This is at the input to the CMG gimbal drive and there is no sampler

in the nonlinearity loop. Consequently, the simulations have been

performed with the two-sampler as well as the one-sampler system models.

The numerical values used in the simulation model correspond to those

of System 1 in Chapter 6.

The G(z) plots of Figures 7-3 and 7-4 and the-1/N(z) plots of

Figures 9-1 through 9-9 show that for y = 1.38x10 5 self-sustained

oscillations will not exist if T is less than 0.25 seconds approximately.

For larger values of y the plots in Figures 9-1 through 9-9 shift

downward appropriately. Thus, with y = 1.38x10 7 the lowest point in

the -I/N(z) curves becomes approximately -102 db, yielding a system in

which self-sustained oscillations will always exist for any sampling

period. The periods of these oscillations depend on the sampling

period used.
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For the computer simulation, the input to the LST system, X, is

set to zero, along with all the initial states, except for the vehicle

position 0V. The following quantities are plotted from the simulation

runs

OV = vehicle position (radians)

WV = vehicle velocity (radians/second)

G8 = Gimbal position (radians)

WG = Gimbal velocity (radians/second)

TGF = Torque output of the nonlinearity (ft-lb)

Error = Error input command to the CMG (radians/second)

X -K0 V -K1 v .

Figures 10-1 through 10-8 show the simulation results with y = 1.38x10 5

Two different sampling periods, T = 0.005 sec and T = 0.1 sec are

considered with both the one-sampler and the two-sampler system models.

Table 10-1 provides the details of each of these simulation.runs. Note

that, as predicted,both the system models are stable with the sampling

periods considered and no self-sustained oscillations exist.

Table 10-1. Computer Simulations with y = 1.38x0l.

Figure No. No. of Samplers in Sampling Period Initial Value
System Model T(sec). of & (rad)

10-1, 10-2 2 0.005 i.x10 -8

10-3, 10-4 1 0.005 1.x10 - 8

10-5, 10-6 2 0.1 l.x10 - e

10-7, 10-8 1 0.1 l.xl0 -8
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Figures 10-9 through 10-30 show the simulation-results with

Y = 1.38x107. Several sampling periods from T = 0.005 sec up to

T =.0.25 sec are used with both the one- and 2-sampler system models.

The details of the simulation parameters and the oscillation periods

are shown in Table 10-2. Note that the one-samplerland two-sampler

system models always oscillate with periods close to those which are

predicted by the -1/N(z) and G(z) plots. Although the two-sampler

model is in closer agreement with the theoretical predictions, these

results do justify the approximation of introducing the sampler.

Note also that for some sampling periods (eg. 0.02 sec) although the

one-sampler model and the two-sampler model oscillate with periods

which differ considerably (0.04 sec and 1.76 sec, respectively) both

periods are in fact predicted by the theory.

From the standpoint of self-sustained oscillations, if y is at its

nominal value of 1.38x105 any sampling period less than 0.25 seconds,

approximately should yield a stable system. However, other practical

considerations and stability considerations due to non-zero inputs

would limit the sampling period to a much lower value.
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Table 10-2. Computer Simulations with y = 1.38x107

Figure No. No. of Samplers Sampling Initial Value Oscillation
in System Model Period of V(rad) Period (sec)

T(sec) (NT)

10-9, 10-10 2 0.005 1.x108 1.58 (316T)

10-11, 10-12 1 0.005 1.xlO-  1.88 (376T)

10-13, 10-14 2 0.02 1.x10 -  0.04 (2T)

10-15, 10-16 2 0.02 Continuation
of 10-13, 0.04 (2T)

10-14

10-17, 10-18 1 0.02 5.x10- 1.76 (88T)

10-19, 10-20, 2 0.05 1.xl0- 0.1 (2T)

10-21, 10-22 1 0.05 1.xlO0-  1.25 (25T)

10-23, 10-24 2 0.1 l.x10- 1.0 (10T)

10-25, 10-26 1 0.1 1.xlO10 1.2 (12T)

10-27, 10-28 2 0.25 1.x10-7 0.5 (2T)

10-29, 10-30 1 0.25 1.x10-7 0.75 (3T)



126

y = 1.38x105, T = 0.005 sec

i:3

0.00 1.50 3.00 U4.50 6.00 7.50 9.00
TIME

CD

CD

o

0.00 1.50 3.00 E o50 6.00 7.50 . 00

TIME

Figure I0-I



127

Sy = 1.38x105, T = 0.005 sec
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Sy= 1.38x105, T = 0.005 sec
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m y = 1.38x105, T = 0.1 sec
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S= 1.38x105, T = 0.1 sec
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